

Experience geothermal energy in the greenhouse business:

a global roadshow of possibilities

Martin van der Hout

Delft NL Wednesday June 15th 2022

0

TOTALO OSSA

Geothermal Greenhouses | Agenda

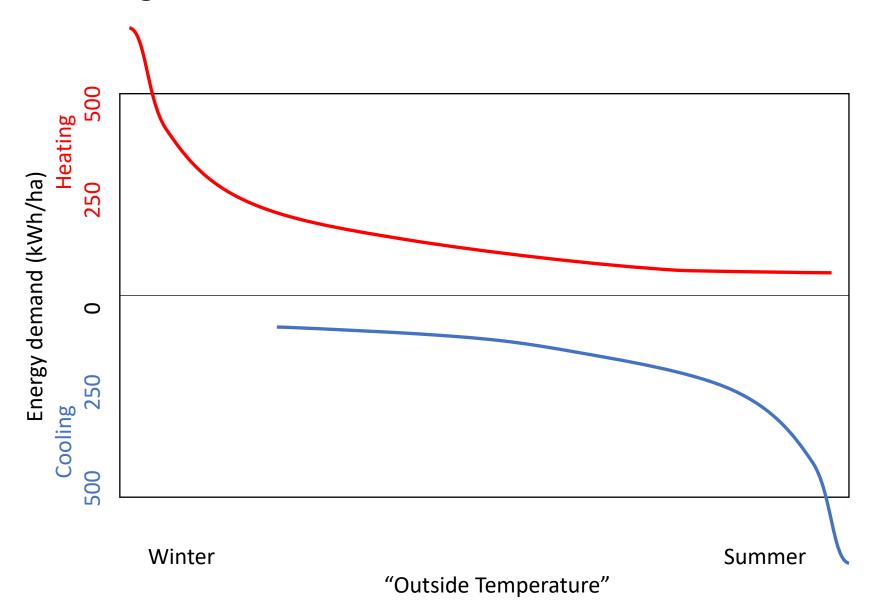
- Renewables in heating and cooling for greenhouses
- 2. Showcases of the use of geothermal in greenhouses
- 3. Relations to Crop & Water management
- Roadmaps for individual projects and configurations
- 5. Market developments

Martin van der Hout IGA – Global Market Manager

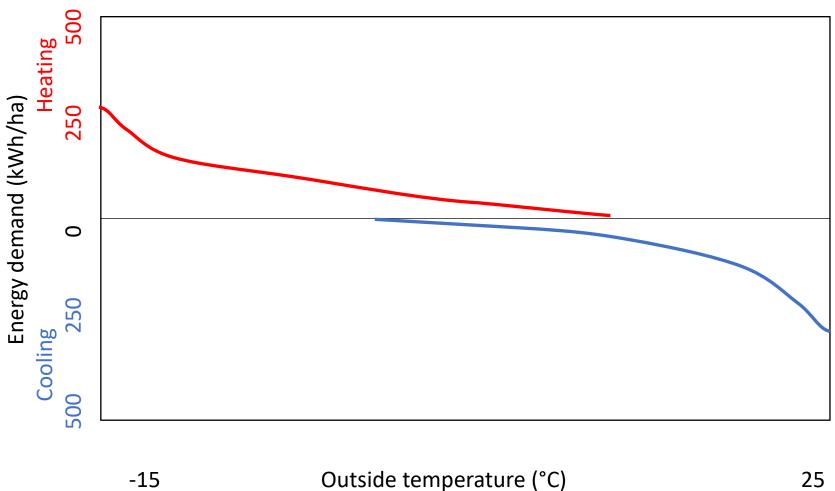
martin@lovegeothermal.org/ https://www.lovegeothermal.org/

Renewables in heating and cooling for greenhouses

Source	Conversion	Greenhouse system
Wind	POWER	Fans
Solar	(Hydrogen)	Lights AC / Air treatment units Heat pumps
Nuclear		
Biomass	HEAT	
Waste heat	HEAT	Heating pipes/tubes
Geothermal	HEAT COOL + storage	Heating pipes/tubes AC / Air treatment units Primal energy for heat pumps


Related to:

- Local climate conditions
- Crop need
- Indoor climate strategy
- Technology level & intensity
- Local energy grids


GENERAL CONCLUSION:

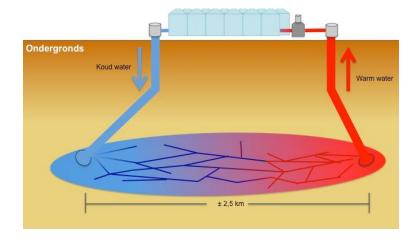
We need all possible options to lower CO2 footprint

Heating and cooling demand – seasonal

Heating and cooling demand – 24 hours

Showcases of the use of geothermal in greenhouses

- 1. NL Deep geothermal (1000 3000 m) production 40 100 °C
- 2. UTES = underground thermal energy storage (50 500 m) cold production summer (5 °C) heat production winter (25 °C)


1. "Deep"geothermal doublet for greenhouses

NL 2021:

24 locations = 6,4 PJ 342.000 tonnes CO2 = 181 M m3 natural gas

- 1. Geothermal heat production 40 100 °C
- 2. Heating installation to cool down in delta T 20 60 °
- 3. High capacities 10 30 MW th per installation
- 4. NL: 20 200 ha greenhouse per doublet
- 5. 100 kW 1000 kW / ha heating capacity
- 6. Combination with other heating installations (fossile)

2. UTES Heating & Cooling

Aquifer Thermal Energy Storage = ATES Borehole Thermal Energy Storage = BTES

Summer: cooling crop and harvesting heat

Winter: heating crop and harvesting coolness

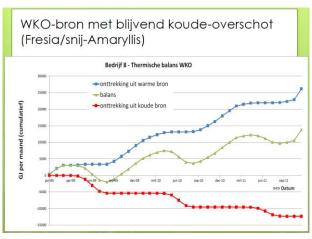
Fit greenhouses and ATES in size

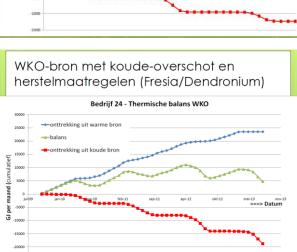
Balancing heat/cool over years for long lasting success Manageability & Scalebility

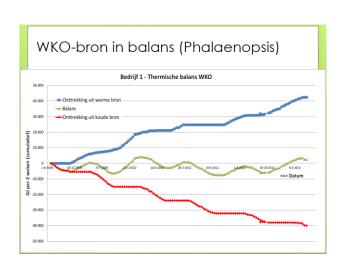
Example 10 ha greenhouse:

Delta T summer/winter = 20°

100 m3/h = 2,3 MWh


2500 hours / year for summer and winter = 5.800 MWh/year



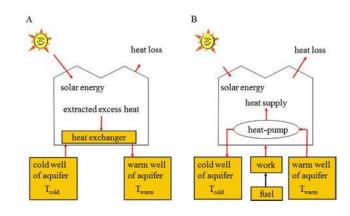


Ad 2. Balancing ATES in greenhouses

1. Example

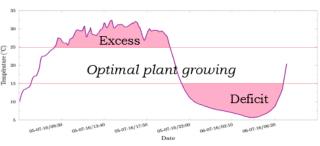
Semi closed greenhouse concepts

Dehumidification greenhouse climates


3. Innovations in configuration systems

Energy systems with geothermal

- Solar heat to store in ATES
- Heat pump in summer and winter mode


Greenhouse systems combinations

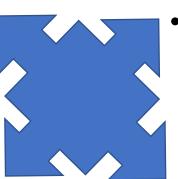
- Stand alone systems
- Isolation = screening
- Semi-closed
 - Dehumification
 - Cooling
 - Less ventilation
- Vertical farming
 - Cooling need!
 - Usage of waste heat

Relations to crop and water management

Climate developments

- More screening
- Less ventilation
- Cooling
- Dehumification

Indirect climate developments


- "Humidity" management
- Evaporation influences
- CO2 management
- Homogeinity T, RH, air movement

Crop response and effects

- Leaf Area Indeces
- Vegetative / generative
- Energy input to manageable evaporation

Water management

- Effect on cc/Joule
- EC to drip
- Needed drain amounts
- Start stop time
- Substrate volumes

Roadmaps for individual projects and configurations

- 1. Crop
- 2. Climate
- 3. Greenhouse climate
 - Lights
 - Screening
 - Heating installations
 - Cooling/dehumification installations
- 4. Heating and Cooling demand
- 5. Options for peak load and backup
- 6. Possibilities aquifers and geology
- 7. Legislation and licences
- 8. Prototyping configurations
 - 1. Peak demands over all seasons
 - 2. Flex demand over days

Individual integrated strategy

on implementing configuration

of greenhouse and geothermal system

Market developments

Integration greenhouse energy system by multiple focus

- Technical: possibilities greenhouse system and geology
- Business / Economic: forecast energy costs / m2 over years
- Social context: policies, legislation, taxes and subsidies

Triple helix = policy makers, academia and market players

- Connection on local level
- Inspiration on global experiences

First program confirmations:

Introductions by:

- TNO
- Wageningen Economic Research
- Shell Geothermal

Specialists for:

- Geological potential
- Contract management heating and cooling
- Stakeholder engagement
- Aquifer Thermal Energy Storage (ATES)

Excursions to:

- Trias Westland
- ECW Netwerk Middenmeer
- ATES for greenhouse

https://www.lovegeothermal.org/portfolio-item/accelerating-geothermal-reenergize-the-greenhouse-sector/